Package: anovir 0.1.0
anovir: Analysis of Virulence
Epidemiological population dynamics models traditionally define a pathogen's virulence as the increase in the per capita rate of mortality of infected hosts due to infection. This package provides functions allowing virulence to be estimated by maximum likelihood techniques. The approach is based on the analysis of relative survival comparing survival in matching cohorts of infected vs. uninfected hosts (Agnew 2019) <doi:10.1101/530709>.
Authors:
anovir_0.1.0.tar.gz
anovir_0.1.0.zip(r-4.5)anovir_0.1.0.zip(r-4.4)anovir_0.1.0.zip(r-4.3)
anovir_0.1.0.tgz(r-4.4-any)anovir_0.1.0.tgz(r-4.3-any)
anovir_0.1.0.tar.gz(r-4.5-noble)anovir_0.1.0.tar.gz(r-4.4-noble)
anovir_0.1.0.tgz(r-4.4-emscripten)anovir_0.1.0.tgz(r-4.3-emscripten)
anovir.pdf |anovir.html✨
anovir/json (API)
# Install 'anovir' in R: |
install.packages('anovir', repos = c('https://philipagnew.r-universe.dev', 'https://cloud.r-project.org')) |
- data_blanford - Full data from Blanford et al
- data_lorenz - A subset of data from Lorenz & Koella
- data_parker - Full data from Parker et al
- recovery_data - Simulated recovery data
- recovery_data_II - Simulated recovery data, with no background mortality
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 years agofrom:80ffca0c6b. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 22 2024 |
R-4.5-win | OK | Nov 22 2024 |
R-4.5-linux | OK | Nov 22 2024 |
R-4.4-win | OK | Nov 22 2024 |
R-4.4-mac | OK | Nov 22 2024 |
R-4.3-win | OK | Nov 22 2024 |
R-4.3-mac | OK | Nov 22 2024 |
Exports:av_long_infectedav_long_uninfectedcheck_dataconf_ints_virulenceetd_infectedetd_uninfectednll_basicnll_basic_logscalenll_controlsnll_exposed_infectednll_frailtynll_frailty_correlatednll_frailty_logscalenll_frailty_sharednll_proportional_virulencenll_recoverynll_recovery_IInll_two_inf_subpops_obsnll_two_inf_subpops_unobssim_data_nll_basic
Confidence intervals
Rendered fromconfidence_intervals.Rmd
usingknitr::rmarkdown
on Nov 22 2024.Last update: 2020-10-24
Started: 2020-10-24
Data format
Rendered fromdata_format.Rmd
usingknitr::rmarkdown
on Nov 22 2024.Last update: 2020-10-24
Started: 2020-10-24
Introduction
Rendered fromIntroduction.Rmd
usingknitr::rmarkdown
on Nov 22 2024.Last update: 2020-10-24
Started: 2020-10-24
Likelihood functions described
Rendered fromnll_functions.Rmd
usingknitr::rmarkdown
on Nov 22 2024.Last update: 2020-10-24
Started: 2020-10-24
Modifying nll functions
Rendered fromnll_functions_modifying.Rmd
usingknitr::rmarkdown
on Nov 22 2024.Last update: 2020-10-24
Started: 2020-10-24
Probability distribution functions
Rendered fromprobability_distributions.Rmd
usingknitr::rmarkdown
on Nov 22 2024.Last update: 2020-10-24
Started: 2020-10-24
Starting values
Rendered fromstarting_values.Rmd
usingknitr::rmarkdown
on Nov 22 2024.Last update: 2020-10-24
Started: 2020-10-24
The exponential distribution
Rendered fromthe_exponential_distribution.Rmd
usingknitr::rmarkdown
on Nov 22 2024.Last update: 2020-10-24
Started: 2020-10-24
Using nll functions
Rendered fromnll_functions_using.Rmd
usingknitr::rmarkdown
on Nov 22 2024.Last update: 2020-10-24
Started: 2020-10-24
Worked examples I
Rendered fromworked_examples_I.Rmd
usingknitr::rmarkdown
on Nov 22 2024.Last update: 2020-10-24
Started: 2020-10-24
Worked examples II
Rendered fromworked_examples_II.Rmd
usingknitr::rmarkdown
on Nov 22 2024.Last update: 2020-10-24
Started: 2020-10-24